Robust preconditioning for coupled Stokes–Darcy problems with the Darcy problem in primal form
نویسندگان
چکیده
The coupled Darcy–Stokes problem is widely used for modeling fluid transport in physical systems consisting of a porous part and free part. In this work we consider preconditioners monolithic solution algorithms the problem, where Darcy primal form. We employ operator preconditioning framework utilize fractional solver at interface between problems to obtain order optimal schemes that are robust with respect material parameters, i.e. permeability, viscosity Beavers–Joseph–Saffman condition. Our approach similar Holter et al. (2020), but since form, expressing mass conservation involves normal derivative, which introduces some mathematical challenges. These challenges will be specifically addressed paper, particular Laplacians interface. Numerical experiments illustrating performance provided. preconditioner posed non-standard Sobolev spaces may perceived as an obstacle its use applications. However, detail implementational aspects show quite feasible realize practice.
منابع مشابه
Constraint Preconditioning for the Coupled Stokes-Darcy System
The use of a constraint (indefinite) preconditioner for the iterative solution of the linear system arising from the finite element discretization of coupled Stokes–Darcy flow is studied. Spectral and field-of-values bounds for the preconditioned system which are independent of the underlying mesh size are presented. Numerical experiments on several twoand three-dimensional problems illustrate ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولCoupled-decompositions: exploiting primal-dual interactions in convex optimization problems
Decomposition techniques implement the so-called “divide and conquer” in convex optimization problems, being primal and dual decompositions the two classical approaches. Although both solutions achieve the goal of splitting the original program into several smaller problems (called the subproblems), these techniques exhibit in general slow speed of convergence. This is a limiting factor in prac...
متن کاملOn Robust Parallel Preconditioning for Incompressible Flow Problems
We consider time-dependent flow problems discretized with higher order finite element methods. Applying a fully implicit time discretization or an IMEX scheme leads to a saddle point system. This linear system is solved using a preconditioned Krylov method, which is fully parallelized on a distributed memory parallel computer. We study a robust block-triangular preconditioner and beside numeric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & mathematics with applications
سال: 2021
ISSN: ['0898-1221', '1873-7668']
DOI: https://doi.org/10.1016/j.camwa.2020.08.021